Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6691): 74-81, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574120

RESUMO

Intelligent textiles provide an ideal platform for merging technology into daily routines. However, current textile electronic systems often rely on rigid silicon components, which limits seamless integration, energy efficiency, and comfort. Chipless electronic systems still face digital logic challenges owing to the lack of dynamic energy-switching carriers. We propose a chipless body-coupled energy interaction mechanism for ambient electromagnetic energy harvesting and wireless signal transmission through a single fiber. The fiber itself enables wireless visual-digital interactions without the need for extra chips or batteries on textiles. Because all of the electronic assemblies are merged in a miniature fiber, this facilitates scalable fabrication and compatibility with modern weaving techniques, thereby enabling versatile and intelligent clothing. We propose a strategy that may address the problems of silicon-based textile systems.

2.
Nat Commun ; 15(1): 2374, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490979

RESUMO

Developing fiber electronics presents a practical approach for establishing multi-node distributed networks within the human body, particularly concerning triboelectric fibers. However, realizing fiber electronics for monitoring micro-physiological activities remains challenging due to the intrinsic variability and subtle amplitude of physiological signals, which differ among individuals and scenarios. Here, we propose a technical approach based on a dynamic stability model of sheath-core fibers, integrating a micro-flexure-sensitive fiber enabled by nanofiber buckling and an ion conduction mechanism. This scheme enhances the accuracy of the signal transmission process, resulting in improved sensitivity (detectable signal at ultra-low curvature of 0.1 mm-1; flexure factor >21.8% within a bending range of 10°.) and robustness of fiber under micro flexure. In addition, we also developed a scalable manufacturing process and ensured compatibility with modern weaving techniques. By combining precise micro-curvature detection, micro-flexure-sensitive fibers unlock their full potential for various subtle physiological diagnoses, particularly in monitoring fiber upper limb muscle strength for rehabilitation and training.

3.
Glob Chall ; 8(2): 2300032, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356680

RESUMO

Flexible thin-film thermoelectric devices (TEDs) can generate electricity from the heat emitted by the human body, which holds great promise for use in energy supply and biomonitoring technologies. The p-type Sb2Te3 hexagon nanosheets are prepared by the hydrothermal synthesis method and compounded with Ti3C2Tx to make composite films, and the results show that the Ti3C2Tx content has a significant impact on the thermoelectric properties of the composite films. When the Ti3C2Tx content is 2 wt%, the power factor of the composite film reaches ≈59 µW m-1 K-2. Due to the outstanding electrical conductivity, high specific surface area, and excellent flexibility of Ti3C2Tx, the composite films also exhibit excellent thermoelectric and mechanical properties. Moreover, the small addition of Ti3C2Tx has a negligible effect on the phase composition of Sb2Te3 films. The TED consists of seven legs with an output voltage of 45 mV at ΔT = 30 K. The potential of highly flexible thin film TEDs for wearable energy collecting and sensing is great.

4.
Sci Adv ; 10(2): eadk4620, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38198540

RESUMO

Collecting energy from the ubiquitous water cycle has emerged as a promising technology for power generation. Here, we have developed a sustainable moisture absorption-evaporation cycling fabric (Mac-fabric). On the basis of the cycling unidirectional moisture conduction in the fabric and charge separation induced by the negative charge channel, sustainable constant voltage power generation can be achieved. A single Mac-fabric can achieve a high power output of 0.144 W/m2 (5.76 × 102 W/m3) at 40% relative humidity (RH) and 20°C. By assembling 500 series and 300 parallel units of Mac-fabrics, a large-scale demo achieves 350 V of series voltage and 33.76 mA of parallel current at 25% RH and 20°C. Thousands of Mac-fabric units are sewn into a tent to directly power commercial electronic products such as mobile phones in outdoor environments. The lightweight (300 g/m2) and soft characteristics of the Mac-fabric make it ideal for large-area integration and energy collection in real circumstances.

5.
ACS Nano ; 18(5): 4008-4018, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277229

RESUMO

Mixed ion-electron conductive (MIEC) bioelectronics has emerged as a state-of-the-art type of bioelectronics for bioelectrical signal monitoring. However, existing MIEC bioelectronics is limited by delamination and transmission defects in bioelectrical signals. Herein, a topological MXene network enhanced MIEC hydrogel bioelectronics that simultaneously exhibits both electrical and mechanical property enhancement while maintaining adhesion and biocompatibility, providing an ideal MIEC bioelectronics for electrophysiological signal monitoring, is introduced. Compared with nontopology hydrogel bioelectronics, the MXene topology increases the dynamic stability of bioelectronics by a factor of 8.4 and the electrical signal by a factor of 10.1 and reduces the energy dissipation by a factor of 20.2. Besides, the topology-enhanced hydrogel bioelectronics exhibits low impedance (<25 Ω) at physiologically relevant frequencies and negligible impedance fluctuation after 5000 stretch cycles. The creation of multichannel bioelectronics with high-fidelity muscle action mapping and gait recognition was made possible by achieving such performance.


Assuntos
Elétrons , Hidrogéis , Nitritos , Elementos de Transição , Condutividade Elétrica , Eletricidade , Íons
6.
Biosens Bioelectron ; 246: 115890, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048721

RESUMO

Real-time monitoring of health conditions is an emerging strong issue in health care, internet information, and other strongly evolving areas. Wearable electronics are versatile platforms for non-invasive sensing. Among a variety of wearable device principles, fiber electronics represent cutting-edge development of flexible electronics. Enabled by electrochemical sensing, fiber electronics have found a wide range of applications, providing new opportunities for real-time monitoring of health conditions by daily wearing, and electrochemical fiber sensors as explored in the present report are a promising emerging field. In consideration of the key challenges and corresponding solutions for electrochemical sensing fibers, we offer here a timely and comprehensive review. We discuss the principles and advantages of electrochemical sensing fibers and fabrics. Our review also highlights the importance of electrochemical sensing fibers in the fabrication of "smart" fabric designs, focusing on strategies to address key issues in fiber-based electrochemical sensors, and we provide an overview of smart clothing systems and their cutting-edge applications in therapeutic care. Our report offers a comprehensive overview of current developments in electrochemical sensing fibers to researchers in the fields of wearables, flexible electronics, and electrochemical sensing, stimulating forthcoming development of next-generation "smart" fabrics-based electrochemical sensing.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Eletrônica
7.
Adv Mater ; 36(4): e2310102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37865832

RESUMO

Electronic textiles have gradually evolved into one of the most important mainstays of flexible electronics owing to their good wearability. However, textile multifunctionality is generally achieved by stacking functional modules, which is not conducive to wearability. Integrating these modules into a single fiber provides a better solution. In this work, a core-spun functional fiber (CSF) constructed from hyper-environmentally stable Zn-based eutectogel as the core layer and polytetrafluoroethylene as the sheath is designed. The CSF achieves a synergistic output effect of piezoelectricity-enhanced triboelectricity, as well as reliable hydrophobicity, and high mid-infrared emissivity and visible light reflectivity. A monolayer functionalized integrated textile is woven from the CSF to enable effective energy (mechanical and droplet energy) harvesting and personal thermal management functions. Furthermore, scenarios for the energy supply, motion detection, and outdoor use of electronic fabrics for electronics applications are demonstrated, opening new avenues for the functional integration of electronic textiles.

8.
Adv Mater ; 36(5): e2305914, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899672

RESUMO

Artificial muscles are indispensable components for next-generation robotics to mimic the sophisticated movements of living systems and provide higher output energies when compared with real muscles. However, artificial muscles actuated by electrochemical ion injection have problems with single actuation properties and difficulties in stable operation in air. Here, air-working electrochromic artificial muscles (EAMs) with both color-changing and actuation functions are reported, which are constructed based on vanadium pentoxide nanowires and carbon tube yarn. Each EAM can generate a contractile stroke of ≈12% during stable operation in the air with multiple color changes (yellow-green-gray) under ±4 V actuation voltages. The reflectance contrast is as high as 51%, demonstrating the excellent versatility of the EAMs. In addition, a torroidal EAM arrangement with fast response and high resilience is constructed. The EAM's contractile stroke can be displayed through visual color changes, which provides new ideas for future artificial muscle applications in soft robots and artificial limbs.


Assuntos
Órgãos Artificiais , Acidente Vascular Cerebral , Humanos , Músculos/fisiologia , Contração Muscular , Movimento
9.
Phys Chem Chem Phys ; 25(48): 32979-32988, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38031515

RESUMO

The exploration of high-quality and efficient electrocatalysts is crucial for the advancement of clean energy utilization and the development of energy conversion technologies. Recently, high-entropy alloys (HEA) have been actively explored as viable catalysts for water electrolysis due to their unique performance such as wide scope for compositional adjustments, excellent catalytic activity, and outstanding stability. However, the mechanism of synergistic oxygen evolution by HEA electrocatalysts at multiple sites has not been systematically and clearly demystified. Herein, in this paper, Pt is combined with inexpensive metals Ni, Cu, Fe, and Co to form a stable HEA structure. The synergistic catalytic mechanism of the PtNiFeCoCu HEA in the oxygen evolution reaction (OER) has been investigated, and the structure has been demonstrated to exhibit excellent hydrogen evolution reaction (HER) activity. The results suggest that the PtNiFeCoCu HEA catalyst achieved a lower overpotential of 0.44 V in the acidic OER, demonstrating that the PtNiFeCoCu HEA is a bifunctional electrocatalyst. In addition, oxygen intermediates are synergistically adsorbed on the surface of high-entropy alloys through multimetallic sites, which breaks the limitation of limited active sites. Further calculations indicated that the favorable OER activity of the catalyst originated from the strong associative coupling of the d orbitals of the synergistic metal sites to the 2p orbitals of the oxygen intermediates with enhanced synergistic effects. This work further elucidates the multisite synergistic catalysis of the PtNiFeCoCu HEA, providing a unique perspective to uncover the source of the high catalytic performance of HEA electrocatalysts.

10.
Phys Chem Chem Phys ; 25(45): 31301-31311, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955628

RESUMO

The development of high performance two-dimensional thermoelectric (TE) materials is crucial for enhancing the conversion of waste heat into electricity and for achieving the transition to new energy. In recent years, two-dimensional Dirac materials with high carrier mobility and non-trivial topological properties have been expected to extend the application of carbon-based materials in the TE field. However, research on the TE properties of two-dimensional Dirac materials is still scarce, and the relevant physical mechanisms that affect the TE figure of merit of the materials are still unclear. Therefore, we carefully selected a typical and experimentally synthesized Dirac structure, graphenylene, and systematically studied its thermal transport and electrical transport properties using density functional theory (DFT) and Boltzmann transport theory. The results show that the ZT value of graphenylene exhibits an extremely significant anisotropy. There is a significant discrepancy in the figure of merit (ZT) values of n-type and p-type systems at the optimum doping concentration, i.e., the ZT value of the n-type system (0.49) is one order of magnitude greater than that of the p-type system (0.06). Graphenylene exhibits excellent electronic performance due to its unique electronic band structure and has an extremely high conductivity (for the n-type system, electrical conductivity at room temperature is 109 S m-1). Interestingly, graphenylene has an unusually higher ZT at low temperature (0.5 at 300 K) than at high temperature (0.3 at 800 K) for n-type doping along the x-axis, contrary to the conventional view that higher ZT values exist in the high temperature range. This work provides a deep insight into the TE properties of two-dimensional Dirac carbon materials and offers new perspectives for enhancing the TE performance and application of carbon-based nanomaterials.

11.
Phys Chem Chem Phys ; 25(41): 28326-28335, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37840459

RESUMO

The development of highly active oxygen evolution reaction (OER) catalysts with fast kinetics is crucial for the advancement of clean energy and fuel conversion to achieve a sustainable energy future. Recently, the synergistic effect of single-atom doping and multicomponent clusters has been demonstrated to significantly improve the catalytic activity of materials. However, such synergistic effects involving multi-electron and proton transfer processes are quite complex and many crucial mechanistic details need be well comprehended. We ingeniously propose a catalyst, (Fed-FeSc)@NiS2 (d stands for doping and c stands for clustering), with Fe and FeS acting synergistically on a NiS2 substrate. Specifically, fully dynamic monitoring of multiple active sites at the (Fed-FeSc)@NiS2 interface using metadynamics is innovatively performed. The results show that the rate determining step value at the overpotential of 1.23 V for the synergistic (Fed-FeSc)@NiS2 is 1.55 V, decreased by 6.67% and 35.29% compared to those of the independently acting single-atom doping and multi-clusters. The unique synergistic structure dramatically increases the d-band centre of the Fe site (-1.45 eV), endowing (Fed-FeSc)@NiS2 with more activity than conventional commercial Ir-C catalysts. This study provides insights into the synergistic effects of single-atom doping and multi-component clusters, leading to exploratory inspiration for the design of highly efficient OER catalysts.

12.
Mater Horiz ; 10(11): 5192-5201, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37725333

RESUMO

Wearable electrochemical sensors have shown potential for personal health monitoring due to their ability to detect biofluids non-invasively at the molecular level. Smart fibers with high flexibility and comfort are currently ideal for fabricating electrochemical sensors, but little research has focused on fluid transport at the human-machine interface, which is of great significance for continuous and stable monitoring and skin comfort. Here, we report an electrochemical sensing fiber with a special core-sheath structure, whose outer layer is wound by nanofibers with a hierarchical Fermat helix structure which has excellent moisture conductivity, and the inner layer is based on CNT fibers covered by three-dimensional reduced graphene oxide folds which have good sensing properties after modification of active materials such as enzymes and selective membranes. This kind of fiber enables efficient sweat capture, and thus only 0.1 µL of sweat is required to activate the device, and it responds very quickly (1.5 s). The fibers were further integrated into a garment to build a wireless sweat detection system, enabling stable monitoring of six physiological markers in sweat (glucose, lactate, Na+, K+, Ca2+, and pH). This work provides a feasible proposal for future personalized medicine and the construction of "smart sensing garments".


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/métodos , Suor/química , Pele , Biomarcadores/análise
13.
Phys Chem Chem Phys ; 25(34): 23249-23261, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37608737

RESUMO

It is estimated that the annual cost of corrosion in most countries accounts for 3-4% of gross domestic product, far exceeding the losses caused by natural disasters, prompting scientists to continuously search for high-performance anti-corrosion materials. Among these high-performance materials, two-dimensional carbon materials represented by graphene have received widespread attention due to their excellent chemical stability and anti-permeability. However, some studies have found that the poor ability of graphene to bind to the interface and the electrical coupling caused by metallicity make it possible to protect copper from corrosion only for a short period of time. To circumvent these issues, through phase behavior research, interface binding property simulation and corrosion mechanism exploration, we propose a more promising anti-corrosive three-dimensional (3D) biphenylene diamond-like carbon membrane (BP-DLC). The kinetic study results show that due to the Gibbs free energy of biphenylene structures below three layers being lower than 0, few-layer biphenylene can spontaneously generate phase transitions of limited size, forming a biphenylene diamond-like membrane and exhibiting superior mechanical properties and a certain degree of flexibility. Mechanical and electronic performance results further show that there is a strong bonding effect between BP-DLC and the metal surface, which further enhances the bistate heterostructure and prolongs the coating life of BP-DLC materials. Compared with pure graphene and Cu substrates, BP-DLC membranes exhibit stronger corrosion resistance by reducing porosity, increasing charge transfer and hindering the diffusion of corrosion ions to the substrate. This study provides a new strategy for constructing corrosion-resistant materials by designing long-term stable and highly corrosion-resistant diamond-like membranes.

14.
Small ; 19(37): e2301742, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37140104

RESUMO

Viologens-based electrochromic (EC) devices with multiple color changes, rapid response time, and simple all-in-one architecture have aroused much attention, yet suffer from poor redox stability caused by the irreversible aggregation of free radical viologens. Herein, the semi-interpenetrating dual-polymer network (DPN) organogels are introduced to improve the cycling stability of viologens-based EC devices. The primary cross-linked poly(ionic liquid)s (PILs) covalently anchored with viologens can suppress irreversible face-to-face contact between radical viologens. The secondary poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) chains with strong polar groups of -F can not only synergistically confine the viologens by the strong electrostatic effect, but also improve the mechanical performance of the organogels. Consequently, the DPN organogels show excellent cycling stability (87.5% retention after 10 000 cycles) and mechanical flexibility (strength of 3.67 MPa and elongation of 280%). Three types of alkenyl viologens are designed to obtain blue, green, and magenta colors, demonstrating the universality of the DPN strategy. Large-area EC devices (20 × 30 cm) and EC fibers based on organogels are assembled to demonstrate promising applications in green and energy-saving buildings and wearable electronics.

15.
Small ; 19(22): e2208234, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36866459

RESUMO

Stretchable electrochromic (EC) devices that can adapt the irregular and dynamic human surfaces show promising applications in wearable display, adaptive camouflage, and visual sensation. However, challenges exist in lacking transparent conductive electrodes with both tensile and electrochemical stability to assemble the complex device structure and endure harsh electrochemical redox reactions. Herein, a wrinkled, semi-embedded Ag@Au nanowire (NW) networks are constructed on elastomer substrates to fabricate stretchable, electrochemically-stable conductive electrodes. The stretchable EC devices are then fabricated by sandwiching a viologen-based gel electrolyte between two conductive electrodes with the semi-embedded Ag@Au NW network. Because the inert Au layer inhibits the oxidation of Ag NWs, the EC device exhibits much more stable color changes between yellow and green than those with pure Ag NW networks. In addition, since the wrinkled semi-embedded structure is deformable and reversibly stretched without serious fractures, the EC devices still maintain excellent color-changing stability under 40% stretching/releasing cycles.

16.
Mater Horiz ; 10(5): 1726-1736, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36891764

RESUMO

Rarely are bionic robots capable of rapid multi-dimensional deformation and object identification in the same way as animals and plants. This study proposes a topological deformation actuator for bionic robots based on pre-expanded polyethylene and large flake MXene, inspired by the octopus predation behavior. This unusual, large-area topological deformation actuator (easily reaching 800 cm2 but is not constrained to this size) prepared by large-scale blow molding and continuous scrape coating exhibits different distribution states of molecular chains at low and high temperatures, causing the actuator's deformation direction to change axially. With its multi-dimensional topological deformation and self-powered active object identification capabilities, the actuator can capture objects like an octopus. The contact electrification effect assists the actuator to identify the type and size of the target object during this multi-dimensional topological deformation that is controllable and designable. This work demonstrates the direct conversion of light energy into contact electrical signals, introducing a new route for the practicality and scaling of bionic robots.

17.
RSC Adv ; 13(14): 9457-9465, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968040

RESUMO

Recently, responsive structure color fibers and fabrics have been designed and prepared for colorimetric detecting of volatile organic compounds (VOCs). Fabric substrates can offer greater flexibility and portability than flat and hard substrates such as glass, silicon wafers, etc. At present, one-dimensional photonic crystal (multilayer films) and three-dimensional dense photonic crystal layers are mainly constructed on fabrics to achieve the response to VOCs. However, the binding force between these structural color coatings and the fabrics was poor, and the dense structures inevitably hindered the diffusion of VOCs. Here, thermoplastic polyurethane (TPU) inverse opal (IOs) fabrics were prepared by sacrificing the SiO2 photonic crystal templates to achieve colorimetric detecting of VOCs. The IOs layer of TPU was cured directly on the fabric surface, TPU infiltrated into the fabric yarns, and bonded the fabrics and IOs layer into a whole, which greatly improved the binding force, and the porous structure and large specific surface area of IOs were conducive to the diffusion of VOCs. The results showed that the TPU IOs fabrics have large reflection peak shifts to DMF, THF, toluene and chloroform vapors, and its concentration has a good linear relationship with the maximum reflection peak value of TPU IOs fabrics. The theoretical detection limits are 1.72, 0.89, 0.78 and 1.64 g m-3, respectively. The response times are 105, 62, 75 and 66 seconds, with good stability. Finally, it was calculated that the discoloration of the TPU IOs fabrics in VOCs was due to the joint-effects of lattice spacing and effective refractive index increase.

18.
Biosensors (Basel) ; 13(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671950

RESUMO

Bioinformation plays an imperative role in day-to-day life. Wearable bioelectronics are important for sensing bioinformation in real-time and conductive hydrogel fibers are a key component in next generation wearable bioelectronics. However, current conductive hydrogel fibers have remarkable disadvantages such as insufficient conductivity, stability, and bioinformation sensing ability. Here, we report the synthesis of a zwitterionic organohydrogel (ZOH) fiber by the combination of the mold method and solvent replacement strategy. The ZOH fiber shows transparency (92.1%), stretchability (905.8%), long-term stability, anti-freezing ability (-35-60 °C), and low light transmission loss (0.17 dB/cm). Then, we integrate the ZOH fiber into fabric for use as a bioinformation sensor, the results prove its capability as a bioinformation monitor, monitoring information such as motion and bioelectric signals. In addition, the potential of the ZOH fiber in optogenetic applications is also confirmed.


Assuntos
Dispositivos Eletrônicos Vestíveis , Movimento (Física) , Hidrogéis , Condutividade Elétrica , Têxteis
19.
Nanoscale ; 14(45): 16857-16864, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36350189

RESUMO

Flexible thermoelectric (TE) devices can utilize the slight temperature difference between curved surfaces and surroundings to generate TE potential, presenting great potential in microelectronic energy supply and wearable sensing. Printing method has been employed to fabricate high-performance flexible TE films by means of excellent capability of assembling nanomaterials, but the decrease in the electrical conductivity caused by organic matters in the thermoelectric pastes will significantly reduce the thermoelectric performance. Herein, we report a hydrogel-based printing strategy to deposit flexible TE generators on various flexible substrates. The hydrogel network formed by physical crosslinking and molecular chain entanglement at 0.498 wt% carboxylated cellulose nanofibers can effectively limit the fluidity of 1D nanorod dispersion, which produces only <5% decline in electrical conductivity and Seebeck coefficient compared to the pure inorganic nanorod films. The device with 72 couples constructed by printing presents a high power density of 1.278 W m-2 under a temperature difference of 50 K. The advantages of hydrogel-based printing can broaden application prospects in the field of wearable electronics.

20.
ACS Appl Mater Interfaces ; 14(42): 48037-48044, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36245123

RESUMO

Vanadium pentoxide (V2O5) with multicolor transition is widely studied in the electrochromic (EC) field to enrich color species of transition-metal oxides; yet, it always suffers from slow switching speed caused by poor electron conductivity and slow ion diffusion, poor cycling stability induced by large volume change during the EC reaction process. Herein, hierarchical network assembly of V2O5@C microrods is introduced to develop an ultrafast, stable, multicolor EC film. Using a two-step pyrolysis that involves metal-organic framework templates, porous microrods with a well-preserved one-dimensional structure are prepared through the assembly of V2O5@C nanocrystals at nanoscale, providing more active sites for ionic insertion and accessible pathways for electron transport. After spray-coating the V2O5@C microrods on conductive substrates, interconnected networks composed of V2O5@C microrods at microscale ensures the infiltration of electrolyte and provide ion transport channels. In addition, the nanoscale porous structure and coated carbon layer can accommodate volumetric changes during ion insertion/extraction process, ensuring high electrochemical stability. As a result, EC electrode with V2O5@C microrods network performed rapid switching speed (1.1/1.0 s) and stable cycle ability (96% after 2000 cycles). At last, flexible large-scale devices and multicolor digital displays were assembled to demonstrate potential application in next-generation wearable electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA